Adaptable Multicore Scheduling
Kimberley Stonehouse, PhD student

Background

* InfOSis aresearch operating system
* Targets the 64-bit x86 architecture
Object-oriented and written in C++
Relatively small codebase (20,000 loc)
Feasible candidate for a redesign

Goal: redesign InfOS to support multicore processing!

Motivation

* Multicore architectures are ubiquitous
* IBM led the way with the dual core POWER4 in 2001
* Fugaku was the #1 on Top500 with 7,630,848 cores in 2021

* But multicore programming is hard
* Introduces synchronisation difficulties
* Locking primitives are a solution if applied correctly

Motivation

» Established operating systems are open-source, but complex
* TheLinux kernel is written in C in a semi-object oriented style
* Codebase evolved over 30 years and has 27.8 million loc

* This complexity makes them difficult to extend
* Multicore support was added retrospectively to most kernels, using big
kernel locking (BKL) as a stepping stone
* New scheduling policies can utilise system resources more efficiently,
but rarely make their way into production operating systems

Key contributions

» Ateaching tool

* Forunderstanding multicore scheduling and multithreaded programming
* Aresearch tool

* Forinvestigating new, dynamic scheduling approaches
* Atechnical tool

* That can be downloaded and booted on real hardware by anyone

Existing system

* |nfOS follows the APIC standard

* Two interrupt controllers
* |/O APIC, directs external interrupts, e.g. keyboard strokes
* LAPIC, responsible for internal interrupts, e.g. timer

CPU
I/0 APIC
LAPIC

APIC BUS

Existing system

DEVICE
[MANAGER } [SCHEDULER}

o () [)

Existing system

DEVICE
[MANAGER } [SCHEDULER}

C\ .
[PIT 1[1/0 APIC} [LAPIC H TIMER } JLIZCUCEE CONTEXT
(. v

v

~

mcmcoO=2C o

Ve

<< TV CONTEXT
&

THREAD2 CONTEXT

~

v

(O\

(. v

& _/

Intel initialisation protocol

* Two classes of processors
* Bootstrap processor (BSP)
» Application processors (APs)

e Communicate via interrupts
» LAPICs send interprocessor interrupts (IPls) to one another

LAPICO | {mmizmmp | LAPIC1
LAPIC2

Detecting cores

 The MADT table describes all interrupt controllers in the system
* Entry type O represents LAPICs

Offset (hex) Length Description
2 1 ACPI Processor ID
3 1 APICID

4 4 Flags

Detecting cores

 The MADT table describes all interrupt controllers in the system
* Entry type O represents LAPICs

Offset (hex) Length Description
2 1 ACPI Processor ID

3 1 APICID

4 4 Flags

/ﬂ online capable

1 2:31

\

0
\\ enabled \\

reserved (set to 0)

Initialising cores

 To start each AP, the BSP
sends a sequence of IPIs
with delays

* [INIT-SIPI-SIPI sequence

INIT IPI,
wait 10ms

SIPI,
wait 1ms

poll for
ready flag

next core

poll for
ready flag

mark core
as error

System diagram

DEVICE
MANAGER

s

COREO

LAPICO

TIMERO

(&

!

!

CORE1

LAPIC1

TIMER1

!

!

CORE2

LAPIC2

TIMER2

!

!

[SCHEDULER]

K

j
THREADO e = as

.

(
<< TV CONTEXT

.

'a
SOV CONTEXT

&

~

J

-

_/

mcmaco =2acC 20

Calibrating timers

* InfOS supports preemptive scheduling using timer interrupts
* The frequency of local timers can vary between machines
* Local timers need to be calibrated before scheduling begins
* This can be done with a known reference timer, e.g. PIT

COREO

- TIMER® PROGRAMMABLE

INTERRUPT

TIMER (PIT)

CORE1

LAPIC

Scheduling threads

SCHEDULEROG]—[SCHEDULER1]—[SCHEDULER2 }

SCHEDULING

MANAGER

Ve

o
[THREADG CONTEXT } THREAD2 CONTEXT [THREADl CONTEXT }
_ J

s ! N :

THREAD8 CONTEXT [THREAD4 CONTEXT }
_ J
) !

THREADS CONTEXT

S

\Ij

System diagram

KERNEL

DEVICE SCHEDULING

MANAGER MANAGER

170 - N O N O ™ s N
[PIT } [AP/IC } COREO —~ LAPICO [~ TIMERO SCHEDULERO® = TO
. J J Y, \) —
v v v)
r N N O D Vs N <
CORE1 ~ LAPIC1 [TIMER1 SCHEDULER1 = T2 "[T8 H T5]
S J U J U J Q J - ~
v v v)
- N O N O ™ - ~
CORE2 [LAPIC2 [~ TIMER2 SCHEDULER2 K+ 11
\ J J J L) —

! V ! V

Average execution time (seconds)

9.500

9.000

8.500

8.000

7.500

7.000

6.500

6.000

5.500

5.000

4.500

4.000

3.500

3.000

2.500

2.000

Evaluation

== InfOS == Linux

Number of cores

2636263 36 3¢
2363332
26363 3 56 5436

26363636 56 54 5456 3

26363 3% > %
2363356 %%
233332

2656 363 6 3¢

%

2

TightVNC: QEMU

o
3%
3
23333 %
2336333

.

o
20339 3 %
23333 %
P
%

*

Future work

* Experiment with new scheduling approaches

* Teach undergraduates about multicore scheduling!

SCHEDULING

MANAGER

SCHEDULERO H SCHEDULER1 H SCHEDULER2

—

~

Ve

~

Ve

~

J

~

J

THREADO CONTEXT THREAD2 CONTEXT THREAD1 CONTEXT
)\)\
! N ! N !
THREAD3 CONTEXT THREAD8 CONTEXT THREADA4 CONTEXT
)\)\

THREAD7

.

~

CONTEXT

J

Ve

THREADS

.

~

CONTEXT

J

Ve

THREAD6

.

~

CONTEXT

J

kimbethstonehouse

%, @ [multicore-support

Thank you!

Any questions?

Kim.Stonehouse@ed.ac.uk

7% THE UNIVERSITY
QAY- of EDINBURGH

