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Background

* InfOSis aresearch operating system
* Targets the 64-bit x86 architecture
Object-oriented and written in C++
Relatively small codebase (20,000 loc)
Feasible candidate for a redesign

Goal: redesign InfOS to support multicore processing!



Motivation

* Multicore architectures are ubiquitous
* IBM led the way with the dual core POWER4 in 2001
* Fugaku was the #1 on Top500 with 7,630,848 cores in 2021

* But multicore programming is hard
* Introduces synchronisation difficulties
* Locking primitives are a solution if applied correctly



Motivation

» Established operating systems are open-source, but complex
* TheLinux kernel is written in C in a semi-object oriented style
* Codebase evolved over 30 years and has 27.8 million loc

* This complexity makes them difficult to extend
* Multicore support was added retrospectively to most kernels, using big
kernel locking (BKL) as a stepping stone
* New scheduling policies can utilise system resources more efficiently,
but rarely make their way into production operating systems



Key contributions

» Ateaching tool

* Forunderstanding multicore scheduling and multithreaded programming
* Aresearch tool

* Forinvestigating new, dynamic scheduling approaches
* Atechnical tool

* That can be downloaded and booted on real hardware by anyone



Existing system

* |nfOS follows the APIC standard

* Two interrupt controllers
* |/O APIC, directs external interrupts, e.g. keyboard strokes
* LAPIC, responsible for internal interrupts, e.g. timer
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Intel initialisation protocol

* Two classes of processors
* Bootstrap processor (BSP)
» Application processors (APs)

e Communicate via interrupts
» LAPICs send interprocessor interrupts (IPls) to one another

LAPICO | {mmizmmp | LAPIC1
LAPIC2



Detecting cores

 The MADT table describes all interrupt controllers in the system
* Entry type O represents LAPICs

Offset (hex) Length Description
2 1 ACPI Processor ID
3 1 APICID

4 4 Flags



Detecting cores

 The MADT table describes all interrupt controllers in the system
* Entry type O represents LAPICs

Offset (hex) Length Description
2 1 ACPI Processor ID

3 1 APICID

4 4 Flags

/ﬂ online capable
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Initialising cores

 To start each AP, the BSP
sends a sequence of IPIs
with delays

* [INIT-SIPI-SIPI sequence

INIT IPI,
wait 10ms

SIPI,
wait 1ms

poll for
ready flag

next core

poll for
ready flag

mark core
as error




System diagram
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Calibrating timers

* InfOS supports preemptive scheduling using timer interrupts
* The frequency of local timers can vary between machines
* Local timers need to be calibrated before scheduling begins
* This can be done with a known reference timer, e.g. PIT
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Scheduling threads
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System diagram
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Average execution time (seconds)
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Future work

* Experiment with new scheduling approaches

* Teach undergraduates about multicore scheduling!
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kimbethstonehouse

%, @ [multicore-support

Thank you!

Any questions?

Kim.Stonehouse@ed.ac.uk
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